Stochastic Subgradient MCMC Methods
نویسندگان
چکیده
Many Bayesian models involve continuous but non-differentiable log-posteriors, including the sparse Bayesian methods with a Laplace prior and the regularized Bayesian methods with maxmargin posterior regularization that acts like a likelihood term. In analogy to the popular stochastic subgradient methods for deterministic optimization, we present the stochastic subgradient MCMC for efficient posterior inference in such Bayesian models in order to deal with largescale applications. We investigate the variants that use adaptive stepsizes and thermostats to improve mixing speeds. Experimental results on a wide range of problems demonstrate the effectiveness of our approach.
منابع مشابه
Stochastic Subgradient Methods
Stochastic subgradient methods play an important role in machine learning. We introduced the concepts of subgradient methods and stochastic subgradient methods in this project, discussed their convergence conditions as well as the strong and weak points against their competitors. We demonstrated the application of (stochastic) subgradient methods to machine learning with a running example of tr...
متن کاملRandomized Block Subgradient Methods for Convex Nonsmooth and Stochastic Optimization
Block coordinate descent methods and stochastic subgradient methods have been extensively studied in optimization and machine learning. By combining randomized block sampling with stochastic subgradient methods based on dual averaging ([22, 36]), we present stochastic block dual averaging (SBDA)—a novel class of block subgradient methods for convex nonsmooth and stochastic optimization. SBDA re...
متن کاملAccelerate Stochastic Subgradient Method by Leveraging Local Error Bound
In this paper, we propose two accelerated stochastic subgradient methods for stochastic non-strongly convex optimization problems by leveraging a generic local error bound condition. The novelty of the proposed methods lies at smartly leveraging the recent historical solution to tackle the variance in the stochastic subgradient. The key idea of both methods is to iteratively solve the original ...
متن کاملConvergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity
We extend the classic convergence rate theory for subgradient methods to apply to non-Lipschitz functions. For the deterministic projected subgradient method, we present a global O(1/ √ T ) convergence rate for any convex function which is locally Lipschitz around its minimizers. This approach is based on Shor’s classic subgradient analysis and implies generalizations of the standard convergenc...
متن کاملOn Stochastic Subgradient Mirror-Descent Algorithm with Weighted Averaging
This paper considers stochastic subgradient mirror-descent method for solving constrained convex minimization problems. In particular, a stochastic subgradient mirror-descent method with weighted iterate-averaging is investigated and its per-iterate convergence rate is analyzed. The novel part of the approach is in the choice of weights that are used to construct the averages. Through the use o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1504.07107 شماره
صفحات -
تاریخ انتشار 2015